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Reducing Pump Fluence
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FIG. S1: Differential reflection normalized to pump fluence as a function of temporal overlap of the

pulses for: (a) high-fluence pump and low-fluence probe, and (b) comparable fluence in both pump

and probe. The black lines indicate the case for the difference frequency of 0 THz (no resonant

plasmon coupling) and the red lines are for a difference frequency of 12 THz (resonant plasmon

coupling). θpump = 55◦, θprobe = 70◦, λprobe = 615 nm.

Since electron heating clearly has a negative impact in the experiment, one wants to min-

imize the pump intensity. However, reducing the light intensity also reduces our difference

frequency coupling efficiency, since surface plasmon generation here is a nonlinear process.

However, a possible route to better isolating coherent signals is to reduce the pump beam

intensity and increase the probe beam intensity, illuminating the sample with similar flu-

ences for both beams. This reduces the Pauli blocking of the probe induced by the pump

beam, decreasing the signal due to saturable absorption decreases, while maintaining the

efficiency of the difference frequency mixing process.

Figures S1(a) and S1(b) show differential reflection normalized to pump fluence for two

difference frequencies, 0 THz (λpump = 615 nm) and 12 THz (λpump = 600 nm), measured for

the angles θpump = 50◦ and θprobe = 70◦. In this geometry we expect a resonant enhancement

for a difference frequency ∼ 12 THz due to plasmon excitation and no enhancement for

0 THz, as previously measured in fig. 3(b). In figure S1 (a) we show a typical measurement

1

for a high-power pump beam (0.26 mJ/cm2) and a low power-probe beam (0.0028 mJ/cm2).

In this case, when the difference frequency matches that of the surface plasmon, a resonant

change to the reflectivity by a factor of 1.6 occurs. For equal pump and probe fluences (∼

0.07 mJ/cm2), as shown in fig. S1(b), we observe a significant suppression of the background,

non-resonant signal. The enhancement then measured from a non-resonant condition to the

resonant surface plasmon excitation is increased to a factor of 3.9.

We also note that in the low-power pump case (fig. S1(b)), the lineshape of the recorded

temporal dynamics is far more symmetric than in the high-power case (fig. S1(a)), which

clearly exhibits the typical asymmetric lineshape indicative of incoherent carrier cooling

dynamics.

Increasing Pump Fluence
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FIG. S2: Differential reflection normalized to fluence as a function of temporal overlap for: low

(left) and high (right) pump fluence at θpump = 15◦ and θprobe = 125◦.

For pulsed fluence ∼ 0.1 mJ/cm2 we expect to generate an electron temperature of

∼ 1000 K[S1]. This means that we are probing a very non-equilibrium electron distribution.

In order to investigate the effect of this electron heating, we increased the pump fluence

used in the experiment to ∼ 1.1 mJ/cm2. These results are shown in fig. S2. We find

that a higher fluence significantly suppresses the surface plasmon resonance features with
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FIG. S1: Differential reflection normalized to pump fluence as a function of temporal overlap of the

pulses for: (a) high-fluence pump and low-fluence probe, and (b) comparable fluence in both pump

and probe. The black lines indicate the case for the difference frequency of 0 THz (no resonant

plasmon coupling) and the red lines are for a difference frequency of 12 THz (resonant plasmon

coupling). θpump = 55◦, θprobe = 70◦, λprobe = 615 nm.

Since electron heating clearly has a negative impact in the experiment, one wants to min-

imize the pump intensity. However, reducing the light intensity also reduces our difference

frequency coupling efficiency, since surface plasmon generation here is a nonlinear process.

However, a possible route to better isolating coherent signals is to reduce the pump beam

intensity and increase the probe beam intensity, illuminating the sample with similar flu-

ences for both beams. This reduces the Pauli blocking of the probe induced by the pump

beam, decreasing the signal due to saturable absorption decreases, while maintaining the

efficiency of the difference frequency mixing process.

Figures S1(a) and S1(b) show differential reflection normalized to pump fluence for two

difference frequencies, 0 THz (λpump = 615 nm) and 12 THz (λpump = 600 nm), measured for

the angles θpump = 50◦ and θprobe = 70◦. In this geometry we expect a resonant enhancement

for a difference frequency ∼ 12 THz due to plasmon excitation and no enhancement for

0 THz, as previously measured in fig. 3(b). In figure S1 (a) we show a typical measurement
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for a high-power pump beam (0.26 mJ/cm2) and a low power-probe beam (0.0028 mJ/cm2).

In this case, when the difference frequency matches that of the surface plasmon, a resonant

change to the reflectivity by a factor of 1.6 occurs. For equal pump and probe fluences (∼

0.07 mJ/cm2), as shown in fig. S1(b), we observe a significant suppression of the background,

non-resonant signal. The enhancement then measured from a non-resonant condition to the

resonant surface plasmon excitation is increased to a factor of 3.9.

We also note that in the low-power pump case (fig. S1(b)), the lineshape of the recorded

temporal dynamics is far more symmetric than in the high-power case (fig. S1(a)), which

clearly exhibits the typical asymmetric lineshape indicative of incoherent carrier cooling
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FIG. S2: Differential reflection normalized to fluence as a function of temporal overlap for: low

(left) and high (right) pump fluence at θpump = 15◦ and θprobe = 125◦.

For pulsed fluence ∼ 0.1 mJ/cm2 we expect to generate an electron temperature of

∼ 1000 K[S1]. This means that we are probing a very non-equilibrium electron distribution.

In order to investigate the effect of this electron heating, we increased the pump fluence

used in the experiment to ∼ 1.1 mJ/cm2. These results are shown in fig. S2. We find

that a higher fluence significantly suppresses the surface plasmon resonance features with
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respect to the background, off-resonance signal. We believe two factors contribute to this

effect: firstly, an increased electron temperature will increase saturable absorption, the effect

primarily responsible for the incoherent background signal. Secondly, due to the negative

photoconductivity usually exhibited by graphene for pulsed femtosecond excitation[S2], one

can expect increased losses and quenching of the surface plasmon, leading to broadening of

the spectral features associated with their excitation.

Evidence that the increased electron temperature also raises the effective Fermi energy of

the sample can be inferred by comparing fig. S2(a) and fig. S2(b), where the resonant regions

of differential reflectivity shift to higher frequencies in the high-fluence case, as would be

expected for the graphene surface plasmon dispersion for a higher doping level.

Polarization Dependence

The experiment shown in fig. 3(c) was repeated with the pump and probe both polarized

with the electric vector parallel to the graphene surface (transverse electric, TE polarized).

Under these circumstances we expect surface plasmon excitation to be suppressed. The
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FIG. S3: Differential reflection normalized to pump fluence as a function of temporal overlap for

transverse magnetic (a) and transverse electric (b) polarizations. The resonances for the predicted

surface plasmon frequencies are clearly suppressed (labelled), while the intraband resonance is

largely unaffected.

3

results are shown in figure S3. When illuminating with TE polarized light, there is a clear

decrease in the nonlinear enhancement to the reflectivity for the 23-27 THz peak and the

∼ 45 THz peak. The peak at ∼ 0 THz is of the same order in both polarization cases,

suggesting that the nonlinearity arising due to the intraband transitions are less sensitive

to the polarization of the light. This is attributed to how carriers respond to the EM field

in the plane of the surface. Since, for the intraband response the conductivity functions are

in-plane, they make no distinction as to the out of plane component (which distinguishes

TE and TM polarization).

While the higher-frequency resonances are strongly suppressed, they are not absent com-

pletely: we attribute this to imperfect polarization of the beams and inhomogeneity in the

graphene sample.

Higher Difference Frequencies
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FIG. S4: Plot of differential reflection normalized to pump fluence as a function of temporal overlap

for θpump = 15◦ and θprobe = 125◦ at higher frequencies. The colorscale has been scaled to fig. 3(c)

for ease of comparison.
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FIG. S4: Plot of differential reflection normalized to pump fluence as a function of temporal overlap

for θpump = 15◦ and θprobe = 125◦ at higher frequencies. The colorscale has been scaled to fig. 3(c)
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We have preformed several measurements for a wider range of difference frequencies. In

figure S4, we present measurements taken for θpump = 15◦ and θprobe = 125◦, where the pump

wavelength was varied from 540 nm to 475 nm, with the probe wavelength fixed at 615 nm.

This gives a difference frequency range from 70 THz to 140 THz. For these larger difference

frequencies, we observe no resonance features above 70 THz, indicating there is no coherent

coupling to higher frequency modes.

Theoretical Model

We describe a theoretical model of two continuous-wave, free-space beams of frequencies

ω1,2 (without loss of generality, assume that ω1 > ω2) interacting with graphene via a

difference frequency generation process. The convention in our calculations to define the

field polarizations and beam angles is illustrated in Fig. S6. The beams are taken to be

incident from air (refractive index n ≈ 1). Important to modeling this experiment is the

inclusion of a frequency-dependent and complex refractive index of the substrate at low

frequencies, in order to capture the lattice vibrations in silica and the resulting surface

optical phonons. To do this, we take a simple dielectric response model based upon three

transverse optical (TO) phonon modes [S3],

n2(ω) = ε∞ +
3∑

j=1

fjω
2
TO,j

ω2
TO,j − ω2 − iωγTO,j

. (S1)

From Ref. [S3], the high-frequency dielectric constant is taken to be ε∞ = 2.4, while the

TO phonon frequencies and oscillator weights are ωTO = 2π × (13.44, 23.75, 33.84) THz

and f = (0.7514, 0.1503, 0.6011), respectively. The damping rates are taken to be γTO =

2π × (0.80, 1.27, 1.27) THz. The resulting real and imaginary parts of the refractive index,

plotted in Fig. S5, approximately correspond to experimentally measured values [S4]. In

practice, this refractive index function is only relevant for the substrate response at the low

difference frequency of ω3 = ω1−ω2, while for the high frequencies ω1,2 the response is nearly

frequency-independent, n ≈ √
ε∞.

In general, one can obtain equations relating the reflection and transmission coefficients

to each other by enforcing electromagnetic boundary conditions (continuity of the normal

electric displacement and tangential electric field) at the graphene interface. The solution
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FIG. S5: Real (black) and imaginary (red) parts of the refractive index of silica versus free-space

wavelength (λ = 2πc/ω), based upon the model of Eq. (S1).

for the transmission coefficient of field i (i = 1, 2) is readily found to be

ti =
2 sin θi

ni sin θi + sinφi

− (ρis/ε0) secφi sin θi
EIi(n2

i sin θi + ni sinφi)
, (S2)

where ni = n(ωi) denotes the substrate refractive index at the field frequency, while the

reflection coefficient is related by ri = 1 − ti sinφi csc θi. Here EIi are the incident field

amplitudes, and θi and φi are the angles of the fields on the vacuum and substrate sides,

respectively. ρis = ρ(ωi, kix) is the graphene surface charge density at frequency ωi and

in-plane wavevector kix = (ωi/c) cos θi. Note that the first term on the right-hand side of

Eq. (S2) reproduces the standard Fresnel coefficient in the absence of a graphene layer (ρis =

0). The angle of the transmitted field is related to the incident by Snell’s Law, cos θi =

ni cosφi.

The surface charge density can be related to the current density J in the graphene layer

via the continuity equation, which in the Fourier domain reads

ρs(ω, kx) = (kx/ω)Jx(ω, kx). (S3)

At the same time, the current density can be related to the electric fields via conductivity
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TO phonon frequencies and oscillator weights are ωTO = 2π × (13.44, 23.75, 33.84) THz

and f = (0.7514, 0.1503, 0.6011), respectively. The damping rates are taken to be γTO =

2π × (0.80, 1.27, 1.27) THz. The resulting real and imaginary parts of the refractive index,

plotted in Fig. S5, approximately correspond to experimentally measured values [S4]. In

practice, this refractive index function is only relevant for the substrate response at the low
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ε∞.

In general, one can obtain equations relating the reflection and transmission coefficients
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FIG. S5: Real (black) and imaginary (red) parts of the refractive index of silica versus free-space

wavelength (λ = 2πc/ω), based upon the model of Eq. (S1).

for the transmission coefficient of field i (i = 1, 2) is readily found to be

ti =
2 sin θi

ni sin θi + sinφi

− (ρis/ε0) secφi sin θi
EIi(n2

i sin θi + ni sinφi)
, (S2)

where ni = n(ωi) denotes the substrate refractive index at the field frequency, while the

reflection coefficient is related by ri = 1 − ti sinφi csc θi. Here EIi are the incident field
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The surface charge density can be related to the current density J in the graphene layer
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ρs(ω, kx) = (kx/ω)Jx(ω, kx). (S3)

At the same time, the current density can be related to the electric fields via conductivity
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FIG. S6: Illustration of p-polarized electromagnetic fields propagating in the x-z plane and inter-

acting with graphene. The fields i = 1, 2 consist of incident, reflected, and transmitted components,

with the directions of propagation and polarizations indicated by the red and black arrows, respec-

tively. The angles of incidence and transmission are θ and φ. The incident field is assumed to

propagate in vacuum (refractive index n = 1), while the graphene sits on top of a substrate with

index n (possibly frequency dependent).

functions. We are particularly interested in the case of difference frequency generation,

where the field produced at the difference frequency and wavevector ω3 = ω1 − ω2 and

k3x = k1x − k2x is resonantly enhanced by aligning them with the plasmon dispersion of

graphene ωp(kx). This motivates a truncated model in which we include only the linear

and second-order conductivities, and frequencies ω1,2 and ω3 (thus left out is sum frequency

generation and the generation of even higher harmonics). Then, the current density for field

1 is given by

Jx(ω1, k1x) = σ(1)(ω1, k1x)Ex(ω1, k1x) + σ(2)(ω1, k1x;ω2, k2x, ω3, k3x)Ex(ω2, k2x)Ex(ω3, k3x).

(S4)

Here, Ex(ω1, k1x) = t1E1I sinφ1 is the total parallel field for i = 1 at the graphene layer,

which we have written in terms of the incident field and transmission coefficient. σ(1) is the

linear conductivity function, while σ(2)(ω1, k1x;ω2, k2x, ω3, k3x) is the second-order nonlinear

conductivity functions relating the current density generated at ω1, k1x given fields at ω2, k2x

and ω3, k3x. Similar expressions as Eq. (S4) can be written down for the current density

7

at ωi, kix (i = 2, 3), and we use an analogous set of conventions to indicate the fields and

conductivities at other frequencies and wavevectors. In what follows, we will also adopt

the more compact notation σ(2)(ω1) = σ(2)(ω1, k1x;ω2, k2x, ω3, k3x), where the dependence on

wavevectors and input frequencies is understood.

The substitution of Eqs. (S3) and (S4) into Eq. (S2) (along with analogous equations

for the other fields i = 2, 3) yields a set of nonlinear equations relating the transmission

coefficients and incident fields,

t1 = t
(L)
1

[
1− |t2E2I |2

(2cε0)2
t
(L)
1 t

(L)
3 σ(2)(ω1)σ

(2)(ω3) sinφ1 sin
2 φ2 sinφ3

]−1

, (S5)

t2 = t
(L)
2

[
1− |t1E1I |2

(2cε0)2
t
(L)
2 t

(L)∗
3 σ(2)(ω2)σ

(2)∗(ω3) sin
2 φ1 sinφ2 sin

∗ φ3

]−1

. (S6)

Here t(L) = 2 sin θ
n sin θ+sinφ+(σ(1)/cε0) sin θ sinφ

is the linear transmission coefficient, and the angle of

the generated field is defined via k3x ≡ n3ω3

c
cosφ3. The complex in-plane field amplitude

generated at the difference frequency and at the position of the graphene layer z = 0 is given

by

E3x = −t1t
∗
2t

(L)
3

2cε0
E1IE

∗
2Iσ

(2)(ω3) sinφ1 sinφ2 sinφ3. (S7)

While Eqs. (S5) and (S6) may appear somewhat complicated, here we note their main

features. First, we note that the input field amplitudes, the beam angles, and the linear

optical properties of the system are generally known. Thus, on one hand, given a theoret-

ical model of the nonlinear conductivity σ(2), these equations can be solved to obtain the

predicted changes in transmission and reflection of the input beams, due to the generation

of plasmons at ω3, k3x. The plasmon field amplitude itself can be found from Eq. (S7). On

the other hand, even absent a theoretical model, if changes in transmission or reflection of

the incident fields are experimentally measured, one can attempt to invert these equations

in order to obtain an experimentally inferred value of σ(2).

The description above generally holds regardless of the values of ω3, k3x. It is particularly

interesting, however, to focus on the case where they align with the plasmon dispersion

relation. In the small wavevector limit and for frequencies smaller than twice the Fermi

frequency, ω � 2ωF , the linear conductivity is well-approximated by the Drude model [S5],

σ(ω) ≈ ie2

π�
ωF

ω + iγ
. (S8)

Here we have included a phenomenological damping term γ. The plasmon dispersion relation

can be found by solving for the pole of the linear transmission coefficient, t(L). For simplicity,
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tively. The angles of incidence and transmission are θ and φ. The incident field is assumed to

propagate in vacuum (refractive index n = 1), while the graphene sits on top of a substrate with

index n (possibly frequency dependent).

functions. We are particularly interested in the case of difference frequency generation,

where the field produced at the difference frequency and wavevector ω3 = ω1 − ω2 and

k3x = k1x − k2x is resonantly enhanced by aligning them with the plasmon dispersion of

graphene ωp(kx). This motivates a truncated model in which we include only the linear
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which we have written in terms of the incident field and transmission coefficient. σ(1) is the
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the more compact notation σ(2)(ω1) = σ(2)(ω1, k1x;ω2, k2x, ω3, k3x), where the dependence on
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Here t(L) = 2 sin θ
n sin θ+sinφ+(σ(1)/cε0) sin θ sinφ

is the linear transmission coefficient, and the angle of

the generated field is defined via k3x ≡ n3ω3

c
cosφ3. The complex in-plane field amplitude

generated at the difference frequency and at the position of the graphene layer z = 0 is given

by
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E1IE

∗
2Iσ

(2)(ω3) sinφ1 sinφ2 sinφ3. (S7)

While Eqs. (S5) and (S6) may appear somewhat complicated, here we note their main

features. First, we note that the input field amplitudes, the beam angles, and the linear

optical properties of the system are generally known. Thus, on one hand, given a theoret-

ical model of the nonlinear conductivity σ(2), these equations can be solved to obtain the

predicted changes in transmission and reflection of the input beams, due to the generation

of plasmons at ω3, k3x. The plasmon field amplitude itself can be found from Eq. (S7). On

the other hand, even absent a theoretical model, if changes in transmission or reflection of

the incident fields are experimentally measured, one can attempt to invert these equations

in order to obtain an experimentally inferred value of σ(2).

The description above generally holds regardless of the values of ω3, k3x. It is particularly

interesting, however, to focus on the case where they align with the plasmon dispersion

relation. In the small wavevector limit and for frequencies smaller than twice the Fermi

frequency, ω � 2ωF , the linear conductivity is well-approximated by the Drude model [S5],

σ(ω) ≈ ie2

π�
ωF

ω + iγ
. (S8)

Here we have included a phenomenological damping term γ. The plasmon dispersion relation

can be found by solving for the pole of the linear transmission coefficient, t(L). For simplicity,
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we will momentarily consider the case of a substrate with frequency-independent refractive

index, so that the role of plasmon damping can be more clearly identified. In the absence

of losses, the dispersion relation is found to be

kx,p =
(1 + n2)ω2

p

4αcωF

, (S9)

where α ≈ 1/137 is the fine-structure constant. In the presence of losses, choosing ω3, k3x to

lie on the plasmon dispersion relation yields a linear transmission amplitude of |t(L)3 | ≈ 2nQ
1+n2 ,

where Q = ω3/γ is the plasmon quality factor. Under these conditions, one thus sees from

Eq. (S7) that the field intensity experiences a resonant enhancement of |E3|2 ∝ Q2. A similar

resonant effect appears in the transmission and reflection coefficients of the incident fields.

While the Eqs. (S5) and (S6) can in principle be inverted to infer σ(2) given experimental

data for reflection or transmission coefficients, in the present experimental setup this proce-

dure can only be done semi-quantitatively due to a number of unknowns. First, the signal

lies significantly above the noise floor only near the plasmon dispersion relation, and only

a limited number of beam angles are investigated. This makes it difficult to infer a specific

wavevector and frequency dependence of the nonlinear conductivity (fundamentally, there

must be a dependence on wavevector, as otherwise σ(2) = 0 for a centrosymmetric material).

Furthermore, the experiment employs pulses whose bandwidths are significantly larger than

the plasmon linewidth. Given that, here we aim to reach a conservative estimate for the

strength of σ(2), while we anticipate that future improved experiments (such as with longer

pulses and nano-structures) and theoretical models will enable more detailed comparisons.

The full conductivity function at zero temperature is given by [S5]

σ(ω) =
ie2

π�
ωF

ω + iγ
+

e2

4�

[
Θ(ω − 2ωF ) +

i

π
log

∣∣∣∣
ω − 2ωF

ω + 2ωF

∣∣∣∣
]
, (S10)

where Θ(x) is the Heaviside step function. The Fermi energy �ωF ≈ 0.5 eV of graphene

is significantly lower than the pump and probe photon energies of ∼ 3 eV. At these fre-

quencies, the linear conductivity of graphene is nearly frequency independent and real,

σ(1)(ω)/(cε0) ≈ πα, which we use to obtain the pump and probe linear reflection coeffi-

cients. Furthermore, we take the simplest possible function for the nonlinear conductivity,

σ(2)(ω) = i|σ(2)(ω2)|(ω/ω2), where |σ(2)(ω2)| is a single fitting parameter (the probe fre-

quency ω2 is fixed in the experiment). With this choice of function, graphene would be

equivalent to a nonlinear material with a frequency-independent bulk nonlinear suscepti-

bility of χ(2) = −iσ(2)(ω)/(ωε0t) = |σ(2)(ω2)|/(ω2ε0t), where t is the effective thickness of

9

graphene. Inserting this nonlinear conductivity into Eqs. (S5), (S6), and (S7), we find that a

value of |σ(2)(ω2)| ≈ 2.4× 10−12 A·m/V2 produces a good qualitative fit to the experimental

data.
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FIG. S7: The numerical solution for the pump conversion efficency, η, as a function of wavevector

and difference frequency.

We now discuss how to obtain the conversion efficiency of pump photons to plasmons.

The number of photons dissipated per unit area and time by the field at the difference

frequency consists of two terms, Γd = Γd,g + Γd,s. The first term consists of damping

from the graphene layer due to the real part of its conductivity, and is given by Γd,g =
(
Re σ(1)(ω3)

)
|E3x|2/(2�ω3). The second term is due to damping from the substrate, due to

the fact that at low frequencies its refractive index is complex. This contribution is given

by Γd,s = ε0
4�|Im (k3x tanφ3)|(Im n2(ω3))|E3x|2(1 + | cotφ3|2). On the other hand, the incident

photon flux in the pump field is Γin = I1 sin θ1/(�ω1), where I1 is the pump intensity.

Generally, the amplitude of the generated plasmon field rate will depend on both the pump

and probe intensities. However, at the level of individual photons, the process is that an
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We now discuss how to obtain the conversion efficiency of pump photons to plasmons.

The number of photons dissipated per unit area and time by the field at the difference

frequency consists of two terms, Γd = Γd,g + Γd,s. The first term consists of damping

from the graphene layer due to the real part of its conductivity, and is given by Γd,g =
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)
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the fact that at low frequencies its refractive index is complex. This contribution is given
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incoming pump photon gets converted to a plasmon (assisted by stimulated emission of a

photon into the probe). Thus, we define the conversion efficiency relative to the pump alone.

In steady state, the rates of photons dissipated and generated at the difference frequency are

equal, and thus the overall conversion efficiency of pump photons to plasmons is η = Γd/Γin.

This efficiency is shown in fig. S7 for the range of frequencies and wavevectors used in our

experiments. Using the estimated value of |σ(2)(ω2)|, we find that the conversion efficiency

for the experimental arrangement shown in fig. 3(b) at the point of maximum signal is

approximately η ≈ 6× 10−6 for the experimental intensities used.

Substrate Response

Differential reflection was recorded as a function of delay time for both the graphene

on quartz and for the bare quartz substrate to ascertain any contribution to the nonlinear

response from the substrate. The experimental parameters for these data were set to the

resonant condition of figure 3(b), with θpump = 50◦, θprobe = 70◦ and the difference frequency

set to 10 THz. The measurements are compared in figure S8, and negligible signal, compared

to the resonant measurement from graphene, is observed.

FIG. S8: Differential reflection normalized to fluence as a function of temporal overlap for:

Graphene on quartz (black) and the bare quartz substrate (red) at θpump = 50◦, θprobe = 70◦.
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