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In periodic systems of low-symmetry, the Bragg condition for the complete interference of waves

along the contour of the Brillouin zone (BZ) boundary is not generally satisfied. As a result, band-

gaps do not necessarily occur at this boundary. This letter demonstrates this experimentally by re-

cording the iso-frequency contours for surface plasmon polaritons (SPPs) supported on a diffraction

grating with an underlying 2D oblique Bravias lattice. It is shown that these contours do not inter-

sect the BZ boundary perpendicularly, as the symmetry operations of the lattice place no conditions

on the surface wave interference at this boundary. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4914479]

From polaritons in photonic thin-films and phonons in

acoustic metamaterials to spin-waves in magnetic media and

electrons in crystals, the interaction and formation of station-

ary waves at Brillouin zone (BZ) boundaries are a phenom-

ena that permeate many active areas of modern physics.

Recently, there has been huge interest in the formation

of standing waves in 2D systems, spurred on by the isolation

of graphene in 2004 and its associated electron transport char-

acter. The unique properties of wave propagation in the hon-

eycomb 2D lattice of graphene have inspired work with

particle plasmon lattices1 and acoustic wave propagation.2

Fundamental to all these standing wave studies, and the pos-

sible formation (or denial) of band-gap formation, is the peri-

odic lattice through which these elementary oscillations

travel.

In this letter, it is experimentally demonstrated that the

formation of band-gaps on an oblique lattice does not occur

at the BZ boundary, which is a consequence of the lattice

symmetry.

The wave used for this investigation is a surface plas-

mon polariton (SPP) supported on a diffraction grating that

provides the underlying oblique lattice. An oblique lattice is

formed of an infinite array of lattice points separated by two

lattice vectors of different magnitudes, oriented at an angle

with respect to each other (a), such that a 6¼ 90�. To realise

this symmetry using surface-relief gratings, two diffraction

gratings of different pitches are “crossed” at an angle a such

that a 6¼ 90�, forming an oblique bigrating. Such a grating is

illustrated in Figure 1(a).

The reciprocal space map of the corresponding lattice is

shown in Figure 1(b) and constitutes the lowest symmetry lat-

tice set of all the two-dimensional Bravais lattices. This recip-

rocal lattice is itself oblique, with the reciprocal lattice vectors

defined as kgx and kgv, oriented at an angle a?¼ 180� –

a¼ 105� with respect to each other. The only symmetry oper-

ation possible for this oblique lattice is a rotation around a lat-

tice point of 180�, which for 2D lattices is the equivalent of an

inversion operation. Centred about each lattice point in Figure

1(b) are circles representing various scattered iso-frequency

contours. The circles formed with solid lines show the con-

tours for a grazing photon, and the dashed lines represent the

iso-frequency contours for scattered SPPs which lie outside

their respective grazing-photon lines (diffraction lines) due to

the greater momentum of SPPs compared to light. In this sim-

ple cartoon, the SPPs do not interact and cross through each

other unperturbed. However, if the SPPs interact to form

band-gaps these iso-frequency contours will deform.3 The

black circle is the case of the un-scattered zero-order light,

which is the region of k-space accessible for mapping using

the experimental method of imaging scatterometry.4

To realise an underlying oblique lattice along which the

surface waves propagate, SPP supporting bigratings were

fabricated. The coordinate system for this type of grating is

FIG. 1. (a) A schematic of the oblique bigrating and the coordinate system.

(b) The corresponding reciprocal space map of the oblique lattice with solid/

dotted line circles indicating scattered light/SPP momentum states at a fixed

frequency. (c) Modelled and (d) experimentally mapped iso-frequency con-

tours via reflection (colorscale) of SPs on an oblique lattice. The mode min-

ima from (a) have been included in (d) as yellow circles for comparison.a)Electronic mail: t.j.constant@exeter.ac.uk
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shown in Figure 1(a). The plane of incidence is defined at an

azimuthal angle of / so that when / ¼ 0� the wavevector of

incidence light lies along the x-direction. When the electric

field vector of the impinging radiation is contained within

the plane of incidence, the light is said to be TM polarised,

and when the electric vector lies orthogonal to the plane, it is

TE polarised. The x-direction is collinear with the grating

vector kgx ¼ 2px̂=kgx for the longer-pitch grating, which

possesses a periodicity of kgx. This period, for all the gratings

presented in this letter, is kgx¼ 600 nm. The second, shorter-

pitch grating lies at an angle of a¼ 75� along the v axis

(defined lying in the xy plane at an angle a to x̂) and for the

grating presented in this letter has a period kgv¼ 400 nm.

The grating vector of this short-pitch grating is defined as

kgv ¼ 2pv̂=kgv. An angle of a¼ 75� was chosen to lie mid-

way between the high symmetry cases of a¼ 60� (hexago-

nal-like) and a¼ 90� (square/rectangular). The ratio of

grooves to pitch of the gratings is designed as Cx¼Cv¼ 0.5.

The depths of the gratings are d1 and d2, and are designed as

d1¼ d2� 40 nm. The gratings for this letter were fabricated

using electron beam lithography (EBL) and a template strip-

ping method.5

The iso-frequency contours of SPPs are mapped using

imaging scatterometery.4 In this technique, reflectivity

anomalies map the allowed momentum contours of the SPP

modes. Figure 1(c) shows theoretical iso-frequency contours

for an oblique bigrating at k0¼ 700 nm. The corresponding

experimentally obtained iso-frequency surface is shown in

Figure 1(d). In the experimental plot at the illuminating

wavelength of 700 nm, the contrast of the entire SPP contour

to the background is weak, making the determination of the

mode position in k-space difficult. To improve the contrast,

the polarisers of the scatterometer are crossed, producing a

dark background reflectivity against which the polarisation

conversion mediated by the SPPs6 provides greater contrast

for the mode positions. The four bright lobes of high reflec-

tivity are polarisation conversion mediated by the ellipsoidal

mirror in the apparatus.

The numerical prediction for the same system shown in

Figure 1(c) is obtained using the Chandezon method,7 approx-

imating the square groove profiles with the Fourier sums,

Fðx; vÞ ¼
P

n¼1;3
4A
np cos 2npx

kgx
þ
P

n¼1;3
4A
np cos 2npv

kgv
, which pro-

vide a suitable approximation to a lamella bi-grating with a

depth of 2A¼ 40 nm, kgx¼ 600 nm, kgv¼ 400 nm, a¼ 75�,
and a ratio groove to pitch spacing of C¼ 0.5. The dielectric

function of silver is taken from literature,8 and for the illumi-

nating wavelength of 700 nm is equal to e¼�23.13þ 0.59i.
The light in the theoretical plot is TM polarised for every azi-

muthal angle. Only the n¼ 1, 3 components are included in

the calculation, as the even components are considered to be

absent for a grating with C¼ 0.5. The modelled values for the

mode position (taken from the theoretical plot at the position

of reflectivity minima) found in Figure 1(c) are plotted on the

experimental results from Figure 1(d) as yellow circles, and

show excellent agreement. This agreement justifies the

assumption that the dominant scattering amplitudes in the

observable SPP band structure are only the n¼ 1, 3

components.

When a SPP meets an equivalent counter-propagating

SPP a standing wave forms, there are generally two possible

arrangements of the electric field for this SPP standing wave

on a grating, which will generally differ in energy. This leads

to an upper and lower energy band, with an energy range

between them where SPP propagation is forbidden.9 The

energy gap size is dependent on the energy of the two possible

field distributions and so is linked intimately to the surface

geometry. The surface profile also provides the scattering

mechanism by which SPPs Bragg scatter to meet counter-

propagating SPPs and form these standing waves. The

strength of this scattering and so the amplitude of the Bragg

scattered SPP affect the size (in frequency) of the band-gap.9

In the upper half-space of Figure 1(c), three SPP mode

crossings are labelled A–C. Crossing point A is the meeting

of a (�1, 0) and a (0, 1) Bragg scattered SPP contour. These

two SPP curves are separated in k-space by a minimum of

two scattering vectors, and so require a multiple scattering

process to interact with each other. With no 2nd order har-

monics in the grating profile, the interaction is weak and no

band-gap is observed. The crossing point B is the intersec-

tion of the (0, 1) and (1, 1) SPPs. This is a process by which

the SPPs must scatter a total of 1 kgx to interact, and so a

small band-gap forms. At point C, the (1, 0) and (1, 1) SPP

cross. These are separated by a single scattering vector 1 kgv,

and so interact, forming a large band-gap.

In this paragraph, we present results that show that on a

surface with such low symmetry the locations in k-space of

SPP standing waves do not necessarily occur at the BZ bound-

ary. This concept is known for the band-gaps that occur for

electron propagation in crystals,10 and is demonstrated here for

surface waves on a periodic lattice. To show this clearly, we

must identify how plasmonic band-gaps are illustrated in the

iso-frequency contours recorded with imaging scatterometry.

The iso-frequency image obtained using scatterometry maps

k-space at a single frequency, with SPP bands seen as an

anomaly in the reflected light. The group velocity of a general

propagating wave is defined as, vg¼rk x(k), where vg is the

group velocity, x(k) is the angular frequency of the wave as a

function of wavevector, k, andrk is the gradient operator with

respect to k. For a small change in frequency dx, the corre-

sponding small movement in k-space, dk, is related to this

group velocity simply by dx¼rk x(k) � dk. For an iso-

frequency contour, there must be no change in frequency along

the contour (dx¼ 0). Setting dx¼ 0 restricts the values of dk

to those values that move along a contour of equal frequency.

It is then apparent since vg � dk¼ 0, vg must lie perpendicular

to dk. This is true for any general contour of constant fre-

quency. If the group velocity in one direction falls to zero at a

boundary, such as at the BZ boundary, the iso-frequency SPP

contour will intersect that boundary perpendicularly.

Figure 2 shows the mapped iso-frequency contours of

SPPs for the oblique grating at a wavelength of k0¼ 650 nm.

The position of the SPP contours are found to present as

bands of low reflectivity, with the polariser of the experiment

chosen in this case to best couple light to the (61, 0) modes.

Also annotated on the figure are the diffracted light circles

(blue lines) and the BZ boundary formed using the Wigner-

Seitz method11 (green line).

It is observed that the SPP contour passes through the

BZ boundary seemingly unperturbed. In Figure 2, the SPP

contour following the (�1, 0) diffracted light circle is shown
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to pass through the BZ at an angle which is not perpendicular

to the boundary. This means that at the boundary, the SPP’s

group velocity in the (0, 1) direction is not zero, and no

standing-wave states in this direction have formed. The

(0, 1) scattered SPP is not observed in this figure as the

polarisation of the illuminating light has been chosen to only

couple strongly to the (1, 0) SPP. Additionally, the (�1, 0)

and (uncoupled) (0, 1) SPPs are not seen to interact, sepa-

rated as they are by a weak multiple scattering process.

An example of SPP contours intersecting the BZ bound-

ary on a rectangular lattice is shown for comparison in Figure

3(c). This scattergram is taken from a plasmonic grating with

rectangular symmetry previously published in Ref. 4, at a

wavelength of 550 nm. The visible dark bands correspond to

the momentum states of the (61, 0) scattered SPPs, and are

highly perturbed from their corresponding (61, 0) light lines,

constrained as they are to meet this boundary perpendicularly.

Such perturbations of SPP contours at the BZ boundary have

also been observed for hexagonal12 and square13 symmetry

lattices.

A Brillouin zone boundary in reciprocal space outlines a

primitive unit cell in the reciprocal lattice and contains on the

boundary points of high-symmetry. To determine this bound-

ary that contains the maximum amount of high-symmetry

points, the perpendicular bisectors of the vectors connecting

the nearest neighbours to one lattice point are drawn, a

method known as the Wigner-Seitz method.11 For the highly

symmetric cases of square, rectangular, or hexagonal lattices,

the boundary is a constant contour of high symmetry.

Neumann’s principle with respect to our system requires

that the physical properties of phenomena associated with the

grating possess the same symmetry as the point symmetry

group of the grating.14 Figure 3(a) shows an arbitrary vector,

r lying on the boundary of a rectangular unit cell. In the case

of a rectangular grating, the mirror and translational symmetry

allows the deduction of the other shown vectors through

various reflections in the rv and rh planes or rotations about

the C point. These vectors sum to give a magnitude of zero in

the direction perpendicular to the zone boundary. Whether

this vector field represents the SPP’s momentum, group veloc-

ity, or Poynting vector, the conclusion is the same: a standing

wave forms perpendicular to the BZ boundary. These are

observed experimentally as discontinuities of the SPP curves

at the BZ boundary.

Using the same approach, we apply the symmetry opera-

tions of the oblique lattice to an arbitrary vector field in

Figure 3(b). With no mirror symmetry, the oblique lattice

possesses only translational and a two-fold rotation symme-

try operations. As shown in the figure, there are no special

conditions on the vectors lying along the BZ boundary

formed using the Weigner-Seitz method, and no condition

for the vectors to cancel perfectly. Standing waves do not

necessarily occur at the BZ boundary. Notice that where

SPPs meet at other locations inside the unit cell (see Figure

2) they do form band-gaps, but there is no requirement from

symmetry that these intersections occur at the BZ boundary.

This condition has recently been found in a theoretical study

of acoustic waves in 2D phononic crystals.15

In conclusion, SPPs propagating on an oblique bigrating

have been investigated. The dispersion of these surface

modes has been mapped experimentally and the SPP interac-

tions discussed in terms of the available scattering ampli-

tudes of the grating. Using imaging scatterometry, it is

observed that the SPP contours are not perturbed as they

pass through the conventional BZ boundary. A generalized

discussion on the symmetry of the BZ is presented, conclud-

ing that this is because the BZ boundary on an oblique gra-

ting is not a contour of high symmetry, and only contains

FIG. 3. (Left) The BZ boundary of a (a) rectangular lattice and (b) and

oblique lattice. The symmetry operations labelled allow the deduction of the

shown vectors (arrows) from a single unit vector, r. (Right) Measured SPP

iso-frequency contours around the BZ boundary (indicated by the red

squares, (left) for (a) a rectangular lattice at k0¼ 550 nm and (b) the oblique

lattice at k0¼ 650 nm.

FIG. 2. Experimentally mapped surface plasmon iso-frequency contour via

reflectivity (colorscale) at k0¼ 650 nm passing through the first BZ bound-

ary. This contour neither meets the boundary perpendicularly nor is per-

turbed as it passes through, showing that the group velocity of the SP mode

is still finite across the boundary.
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isolated points around which the symmetry conditions may

be met for the formation of SPP standing waves. The experi-

mental results are supported by excellent agreement with nu-

merical predictions.
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